
Inverse Matrices       Linear Algebra X. Du 

 

 Only applies to square matrices. 

 An inverse matrix 1A is the matrix such that IAAAA   11 . 

 If 1A exists, then A is said to be invertible. 

o A is invertible iff 0)det( A . 

 1A is unique is unique to A. 

o The inverse of 1A is A. 
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 How to find 1A : 

o Method 1: Perform Gaussian elimination on the associated augmented matrix

 IA . The reduced row-echelon form should be the matrix  1AI  

 If this process does not yield  1AI , then A is not invertible. 

o Method 2: )(adj
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A  , where )(adj A is the adjugate matrix, the transpose 

of the matrix of cofactors (determinant with the row and column deleted). 

 Invertible Matrix Theorem: The following statements are equivalent (i.e. any one 

implies another) for some nn square matrix A. 

o A is invertible. 

o 0)det( A  

o TA is invertible 

o The reduced row-echelon form of A is I. 

o A can be written as a finite product of elementary matrices. 
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o The row and column vectors of A are linearly independent. 

o The row and column vectors of A form a basis of nR  

o A linear transformation nn RRT : , xAxT
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)( is a bijection. 

o 0 is not an eigenvalue of A. 

o 0 is not a singular value of A. 
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