Inverse Matrices

- Only applies to square matrices.
- An inverse matrix A^{-1} is the matrix such that $AA^{-1} = A^{-1}A = I$.
- If A^{-1} exists, then A is said to be **invertible**.
 - A is invertible iff $det(A) \neq 0$.
- A^{-1} is unique is unique to A.
 - The inverse of A^{-1} is A.

•
$$\det(A^{-1}) = \frac{1}{\det(A)}$$

- $(A^T)^{-1} = (A^{-1})^T$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(cA)^{-1} = \frac{1}{c}A^{-1}$

• For a 2×2 matrix
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

- How to find A^{-1} :
 - o Method 1: Perform Gaussian elimination on the associated augmented matrix
 - $(A \ I)$. The reduced row-echelon form should be the matrix $\begin{pmatrix} I \ A^{-1} \end{pmatrix}$
 - If this process does not yield $(I A^{-1})$, then A is not invertible.
 - Method 2: $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$, where $\operatorname{adj}(A)$ is the **adjugate matrix**, the transpose

of the matrix of cofactors (determinant with the row and column deleted).

- **Invertible Matrix Theorem**: The following statements are equivalent (i.e. any one implies another) for some $n \times n$ square matrix A.
 - \circ *A* is invertible.
 - $\circ \quad \det(A) \neq 0$
 - \circ A^T is invertible
 - The reduced row-echelon form of A is I.
 - A can be written as a finite product of elementary matrices.
 - $A\vec{x} = \vec{b}$ has a unique solution
 - $A\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$
 - The row and column vectors of *A* are linearly independent.
 - The row and column vectors of A form a basis of R^n
 - A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$, $T(\vec{x}) = A\vec{x}$ is a bijection.
 - \circ 0 is not an eigenvalue of A.
 - \circ 0 is not a singular value of A.
 - \circ rank(A) = n
 - $\circ \quad \ker(A) = \{0\}$